Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Ther Methods Clin Dev ; 29: 329-346, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214315

RESUMO

Upscaling of kidney epithelial cells is crucial for renal regenerative medicine. Nonetheless, the adult kidney lacks a distinct stem cell hierarchy, limiting the ability to long-term propagate clonal populations of primary cells that retain renal identity. Toward this goal, we tested the paradigm of shifting the balance between differentiation and stemness in the kidney by introducing a single pluripotency factor, OCT4. Here we show that ectopic expression of OCT4 in human adult kidney epithelial cells (hKEpC) induces the cells to dedifferentiate, stably proliferate, and clonally emerge over many generations. Control hKEpC dedifferentiate, assume fibroblastic morphology, and completely lose clonogenic capacity. Analysis of gene expression and histone methylation patterns revealed that OCT4 represses the HNF1B gene module, which is critical for kidney epithelial differentiation, and concomitantly activates stemness-related pathways. OCT4-hKEpC can be long-term expanded in the dedifferentiated state that is primed for renal differentiation. Thus, when expanded OCT4-hKEpC are grown as kidney spheroids (OCT4-kSPH), they reactivate the HNF1B gene signature, redifferentiate, and efficiently generate renal structures in vivo. Hence, changes occurring in the cellular state of hKEpC following OCT4 induction, long-term propagation, and 3D aggregation afford rapid scale-up technology of primary renal tissue-forming cells.

2.
Nucleic Acids Res ; 51(4): 1662-1673, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36156096

RESUMO

The histone H3 variant, H3.3, is localized at specific regions in the genome, especially promoters and active enhancers, and has been shown to play important roles in development. A lysine to methionine substitution in position 27 (H3.3K27M) is a main cause of Diffuse Intrinsic Pontine Glioma (specifically Diffuse Midline Glioma, K27M-mutant), a lethal type of pediatric cancer. H3.3K27M has a dominant-negative effect by inhibiting the Polycomb Repressor Complex 2 (PRC2) activity. Here, we studied the immediate, genome-wide, consequences of the H3.3K27M mutation independent of PRC2 activity. We developed Doxycycline (Dox)-inducible mouse embryonic stem cells (ESCs) carrying a single extra copy of WT-H3.3, H3.3K27M and H3.3K27L, all fused to HA. We performed RNA-Seq and ChIP-Seq at different times following Dox induction in undifferentiated and differentiated ESCs. We find increased binding of H3.3 around transcription start sites in cells expressing both H3.3K27M and H3.3K27L compared with WT, but not in cells treated with PRC2 inhibitors. Differentiated cells carrying either H3.3K27M or H3.3K27L retain expression of ESC-active genes, in expense of expression of genes related to neuronal differentiation. Taken together, our data suggest that a modifiable H3.3K27 is required for proper histone incorporation and cellular maturation, independent of PRC2 activity.


Assuntos
Células-Tronco Embrionárias , Histonas , Animais , Camundongos , Diferenciação Celular , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Glioma/genética , Histonas/metabolismo , Mutação , Proteínas do Grupo Polycomb/metabolismo , Doxiciclina/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo
3.
Nat Commun ; 12(1): 6718, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795250

RESUMO

In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity.


Assuntos
Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Impressão Genômica , Haploidia , Células-Tronco Embrionárias Humanas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Sequenciamento de Cromatina por Imunoprecipitação/métodos , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Células-Tronco Embrionárias Humanas/citologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Partenogênese/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Espermatogênese/genética
4.
Genome Biol ; 22(1): 73, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663567

RESUMO

BACKGROUND: Many neurodegenerative diseases develop only later in life, when cells in the nervous system lose their structure or function. In many forms of neurodegenerative diseases, this late-onset phenomenon remains largely unexplained. RESULTS: Analyzing single-cell RNA sequencing from Alzheimer's disease (AD) and Huntington's disease (HD) patients, we find increased transcriptional heterogeneity in disease-state neurons. We hypothesize that transcriptional heterogeneity precedes neurodegenerative disease pathologies. To test this idea experimentally, we use juvenile forms (72Q; 180Q) of HD iPSCs, differentiate them into committed neuronal progenitors, and obtain single-cell expression profiles. We show a global increase in gene expression variability in HD. Autophagy genes become more stable, while energy and actin-related genes become more variable in the mutant cells. Knocking down several differentially variable genes results in increased aggregate formation, a pathology associated with HD. We further validate the increased transcriptional heterogeneity in CHD8+/- cells, a model for autism spectrum disorder. CONCLUSIONS: Overall, our results suggest that although neurodegenerative diseases develop over time, transcriptional regulation imbalance is present already at very early developmental stages. Therefore, an intervention aimed at this early phenotype may be of high diagnostic value.


Assuntos
Regulação da Expressão Gênica , Heterogeneidade Genética , Predisposição Genética para Doença , Modelos Biológicos , Doenças Neurodegenerativas/etiologia , Células-Tronco Pluripotentes/metabolismo , Adulto , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Patrimônio Genético , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , RNA-Seq , Análise de Célula Única/métodos
5.
Mol Psychiatry ; 26(2): 666-681, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-30953002

RESUMO

Mutations in AUTS2 are associated with autism, intellectual disability, and microcephaly. AUTS2 is expressed in the brain and interacts with polycomb proteins, yet it is still unclear how mutations in AUTS2 lead to neurodevelopmental phenotypes. Here we report that when neuronal differentiation is initiated, there is a shift in expression from a long isoform to a short AUTS2 isoform. Yeast two-hybrid screen identified the splicing factor SF3B1 as an interactor of both isoforms, whereas the polycomb group proteins, PCGF3 and PCGF5, were found to interact exclusively with the long AUTS2 isoform. Reporter assays showed that the first exons of the long AUTS2 isoform function as a transcription repressor, but the part that consist of the short isoform acts as a transcriptional activator, both influenced by the cellular context. The expression levels of PCGF3 influenced the ability of the long AUTS2 isoform to activate or repress transcription. Mouse embryonic stem cells (mESCs) with heterozygote mutations in Auts2 had an increase in cell death during in vitro corticogenesis, which was significantly rescued by overexpressing the human AUTS2 transcripts. mESCs with a truncated AUTS2 protein (missing exons 12-20) showed premature neuronal differentiation, whereas cells overexpressing AUTS2, especially the long transcript, showed increase in expression of pluripotency markers and delayed differentiation. Taken together, our data suggest that the precise expression of AUTS2 isoforms is essential for regulating transcription and the timing of neuronal differentiation.


Assuntos
Diferenciação Celular , Proteínas do Citoesqueleto , Neurônios/citologia , Fatores de Transcrição , Animais , Éxons , Camundongos , Fenótipo , Isoformas de Proteínas/genética , Fatores de Transcrição/genética
6.
Stem Cell Reports ; 15(6): 1260-1274, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296674

RESUMO

The multifunctional histone chaperone, SET, is essential for embryonic development in the mouse. Previously, we identified SET as a factor that is rapidly downregulated during embryonic stem cell (ESC) differentiation, suggesting a possible role in the maintenance of pluripotency. Here, we explore SET's function in early differentiation. Using immunoprecipitation coupled with protein quantitation by LC-MS/MS, we uncover factors and complexes, including P53 and ß-catenin, by which SET regulates lineage specification. Knockdown for P53 in SET-knockout (KO) ESCs partially rescues lineage marker misregulation during differentiation. Paradoxically, SET-KO ESCs show increased expression of several Wnt target genes despite reduced levels of active ß-catenin. Further analysis of RNA sequencing datasets hints at a co-regulatory relationship between SET and TCF proteins, terminal effectors of Wnt signaling. Overall, we discover a role for both P53 and ß-catenin in SET-regulated early differentiation and raise a hypothesis for SET function at the ß-catenin-TCF regulatory axis.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Chaperonas de Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Chaperonas de Histonas/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteína Supressora de Tumor p53/genética , beta Catenina/genética
7.
Stem Cell Reports ; 15(6): 1275-1286, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-32559458

RESUMO

Chromatin regulators play fundamental roles in controlling pluripotency and differentiation. We examined the effect of mutations in 703 genes from nearly 70 chromatin-modifying complexes on human embryonic stem cell (ESC) growth. While the vast majority of chromatin-associated complexes are essential for ESC growth, the only complexes that conferred growth advantage upon mutation of their members, were the repressive complexes LSD-CoREST and BHC. Both complexes include the most potent growth-restricting chromatin-related protein, ZMYM2. Interestingly, while ZMYM2 expression is rather low in human blastocysts, its expression peaks in primed ESCs and is again downregulated upon differentiation. ZMYM2-null ESCs overexpress pluripotency genes and show genome-wide promotor-localized histone H3 hyper-acetylation. These mutant cells were also refractory to differentiate in vitro and failed to produce teratomas upon injection into immunodeficient mice. Our results suggest a central role for ZMYM2 in the transcriptional regulation of the undifferentiated state and in the exit-from-pluripotency of human ESCs.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Mutação , Proteínas de Neoplasias/metabolismo , Teratoma/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias Humanas , Humanos , Camundongos , Camundongos SCID , Proteínas de Neoplasias/genética , Teratoma/genética , Teratoma/patologia , Fatores de Transcrição/genética
8.
Nat Commun ; 11(1): 1189, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132541

RESUMO

Changes in potential regulatory elements are thought to be key drivers of phenotypic divergence. However, identifying changes to regulatory elements that underlie human-specific traits has proven very challenging. Here, we use 63 reconstructed and experimentally measured DNA methylation maps of ancient and present-day humans, as well as of six chimpanzees, to detect differentially methylated regions that likely emerged in modern humans after the split from Neanderthals and Denisovans. We show that genes associated with face and vocal tract anatomy went through particularly extensive methylation changes. Specifically, we identify widespread hypermethylation in a network of face- and voice-associated genes (SOX9, ACAN, COL2A1, NFIX and XYLT1). We propose that these repression patterns appeared after the split from Neanderthals and Denisovans, and that they might have played a key role in shaping the modern human face and vocal tract.


Assuntos
Metilação de DNA , DNA Antigo , Face/anatomia & histologia , Fenótipo , Fonação/genética , Adulto , Idoso , Animais , Células Cultivadas , Criança , Condrócitos , Evolução Molecular , Feminino , Redes Reguladoras de Genes , Especiação Genética , Humanos , Laringe/anatomia & histologia , Masculino , Pessoa de Meia-Idade , Homem de Neandertal/genética , Pan troglodytes/genética , Cultura Primária de Células , Língua/anatomia & histologia , Prega Vocal/anatomia & histologia , Vocalização Animal
9.
Mol Neurobiol ; 57(3): 1778, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31939145

RESUMO

In the original version of the paper, the name of one of the contributing authors, Dr. Mundackal S. Divya (orcid:0000-0002-2869-7191).

10.
Mol Neurobiol ; 57(3): 1768-1777, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31834602

RESUMO

Huntington's disease (HD) is a neurodegenerative late-onset genetic disorder caused by CAG expansions in the coding region of the Huntingtin (HTT) gene, resulting in a poly-glutamine (polyQ) expanded HTT protein. Considerable efforts have been devoted for studying HD and other polyQ diseases using animal models and cell culture systems, but no treatment currently exists. Human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer an elegant solution for modeling human diseases. However, as embryonic or rejuvenated cells, respectively, these pluripotent stem cells (PSCs) do not recapitulate the late-onset feature of the disease. Here, we applied a robust and rapid differentiation protocol to derive electrophysiologically active striatal GABAergic neurons from human wild-type (WT) and HD ESCs and iPSCs. RNA-seq analyses revealed that HD and WT PSC-derived neurons are highly similar in their gene expression patterns. Interestingly, ectopic expression of Progerin in both WT and HD neurons exacerbated the otherwise non-significant changes in gene expression between these cells, revealing IGF1 and genes involved in neurogenesis and nervous system development as consistently altered in the HD cells. This work provides a useful tool for modeling HD in human PSCs and reveals potential molecular targets altered in HD neurons.


Assuntos
Doença de Huntington/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Lamina Tipo A/metabolismo , Neurônios/citologia , Células-Tronco Pluripotentes/metabolismo , Transcrição Gênica , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo
11.
Oncogene ; 38(17): 3103-3118, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30622338

RESUMO

The cancer stem cell (CSC) model suggests that a subpopulation of cells within the tumor, the CSCs, is responsible for cancer relapse and metastasis formation. CSCs hold unique characteristics, such as self-renewal, differentiation abilities, and resistance to chemotherapy, raising the need for discovering drugs that target CSCs. Previously we have found that the antihypertensive drug spironolactone impairs DNA damage response in cancer cells. Here we show that spironolactone, apart from inhibiting cancerous cell growth, is also highly toxic to CSCs. Notably, we demonstrate that CSCs have high basal levels of DNA double-strand breaks (DSBs). Mechanistically, we reveal that spironolactone does not damage the DNA but impairs DSB repair and induces apoptosis in cancer cells and CSCs while sparing healthy cells. In vivo, spironolactone treatment reduced the size and CSC content of tumors. Overall, we suggest spironolactone as an anticancer reagent, toxic to both cancer cells and, particularly to, CSCs.


Assuntos
Antineoplásicos/administração & dosagem , Reparo do DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Espironolactona/administração & dosagem , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos , Células HeLa , Humanos , Camundongos , Neoplasias/genética , Espironolactona/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Cell Biol ; 217(2): 473-481, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29284668

RESUMO

Neuronal stimulation leads to immediate early gene (IEG) expression through calcium-dependent mechanisms. In recent years, considerable attention has been devoted to the transcriptional responses after neuronal stimulation, but relatively little is known about the changes in chromatin dynamics that follow neuronal activation. Here, we use fluorescence recovery after photobleaching, biochemical fractionations, and chromatin immunoprecipitation to show that KCl-induced depolarization in primary cultured cortical neurons causes a rapid release of the linker histone H1 from chromatin, concomitant with IEG expression. H1 release is repressed by PARP inhibition, PARP1 deletion, a non-PARylatable H1, as well as phosphorylation inhibitions and a nonphosphorylatable H1, leading to hindered IEG expression. Further, H1 is replaced by PARP1 on IEG promoters after neuronal stimulation, and PARP inhibition blocks this reciprocal binding response. Our results demonstrate the relationship between neuronal excitation and chromatin plasticity by identifying the roles of polyadenosine diphosphate ribosylation and phosphorylation of H1 in regulating H1 chromatin eviction and IEG expression in stimulated neurons.


Assuntos
Regulação da Expressão Gênica , Histonas/metabolismo , Neurônios/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Cloreto de Potássio/farmacologia
13.
Stem Cell Reports ; 9(4): 1291-1303, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28966118

RESUMO

Embryonic stem cells (ESCs) are regulated by pluripotency-related transcription factors in concert with chromatin regulators. To identify additional stem cell regulators, we screened a library of endogenously labeled fluorescent fusion proteins in mouse ESCs for fluorescence loss during differentiation. We identified SET, which displayed a rapid isoform shift during early differentiation from the predominant isoform in ESCs, SETα, to the primary isoform in differentiated cells, SETß, through alternative promoters. SETα is selectively bound and regulated by pluripotency factors. SET depletion causes proliferation slowdown and perturbed neuronal differentiation in vitro and developmental arrest in vivo, and photobleaching methods demonstrate SET's role in maintaining a dynamic chromatin state in ESCs. This work identifies an important regulator of pluripotency and early differentiation, which is controlled by alternative promoter usage.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona Acetiltransferases/genética , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proliferação de Células , Sobrevivência Celular/genética , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Placa Neural/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Isoformas de Proteínas
14.
Genome Biol ; 16: 213, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26415775

RESUMO

BACKGROUND: Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown. RESULTS: Here we identify Heterochromatin Protein 1ß (HP1ß) as an essential protein for proper differentiation, and, unexpectedly, for the maintenance of pluripotency in ESCs. In pluripotent and differentiated cells HP1ß is differentially localized and differentially associated with chromatin. Deletion of HP1ß, but not HP1α, in ESCs provokes a loss of the morphological and proliferative characteristics of embryonic pluripotent cells, reduces expression of pluripotency factors and causes aberrant differentiation. However, in differentiated cells, loss of HP1ß has the opposite effect, perturbing maintenance of the differentiation state and facilitating reprogramming to an induced pluripotent state. Microscopy, biochemical fractionation and chromatin immunoprecipitation reveal a diffuse nucleoplasmic distribution, weak association with chromatin and high expression levels for HP1ß in ESCs. The minor fraction of HP1ß that is chromatin-bound in ESCs is enriched within exons, unlike the situation in differentiated cells, where it binds heterochromatic satellite repeats and chromocenters. CONCLUSIONS: We demonstrate an unexpected duality in the role of HP1ß: it is essential in ESCs for maintaining pluripotency, while it is required for proper differentiation in differentiated cells. Thus, HP1ß function both depends on, and regulates, the pluripotent state.


Assuntos
Proteínas Cromossômicas não Histona/genética , Células-Tronco Embrionárias , Heterocromatina/genética , Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular/genética , Reprogramação Celular/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Camundongos , Camundongos Knockout
15.
Cell Metab ; 21(3): 392-402, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25738455

RESUMO

Loss of pluripotency is a gradual event whose initiating factors are largely unknown. Here we report the earliest metabolic changes induced during the first hours of differentiation. High-resolution NMR identified 44 metabolites and a distinct metabolic transition occurring during early differentiation. Metabolic and transcriptional analyses showed that pluripotent cells produced acetyl-CoA through glycolysis and rapidly lost this function during differentiation. Importantly, modulation of glycolysis blocked histone deacetylation and differentiation in human and mouse embryonic stem cells. Acetate, a precursor of acetyl-CoA, delayed differentiation and blocked early histone deacetylation in a dose-dependent manner. Inhibitors upstream of acetyl-CoA caused differentiation of pluripotent cells, while those downstream delayed differentiation. Our results show a metabolic switch causing a loss of histone acetylation and pluripotent state during the first hours of differentiation. Our data highlight the important role metabolism plays in pluripotency and suggest that a glycolytic switch controlling histone acetylation can release stem cells from pluripotency.


Assuntos
Acetilcoenzima A/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Glicólise/fisiologia , Histonas/metabolismo , Acetilcoenzima A/genética , Acetilação , Animais , Diferenciação Celular/genética , Linhagem Celular , Glicólise/genética , Histonas/genética , Humanos , Camundongos , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
16.
Cell Rep ; 10(12): 2019-31, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25818293

RESUMO

Embryonic stem cells (ESCs) possess a distinct chromatin conformation maintained by specialized chromatin proteins. To identify chromatin regulators in ESCs, we developed a simple biochemical assay named D-CAP (differential chromatin-associated proteins), using brief micrococcal nuclease digestion of chromatin, followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Using D-CAP, we identified several differentially chromatin-associated proteins between undifferentiated and differentiated ESCs, including the chromatin remodeling protein SMARCD1. SMARCD1 depletion in ESCs led to altered chromatin and enhanced endodermal differentiation. Gene expression and chromatin immunoprecipitation sequencing (ChIP-seq) analyses suggested that SMARCD1 is both an activator and a repressor and is enriched at developmental regulators and that its chromatin binding coincides with H3K27me3. SMARCD1 knockdown caused H3K27me3 redistribution and increased H3K4me3 around the transcription start site (TSS). One of the identified SMARCD1 targets was Klf4. In SMARCD1-knockdown clones, KLF4, as well as H3K4me3 at the Klf4 locus, remained high and H3K27me3 was abolished. These results propose a role for SMARCD1 in restricting pluripotency and activating lineage pathways by regulating H3K27 methylation.


Assuntos
Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Fator 4 Semelhante a Kruppel , Camundongos
17.
Cell Rep ; 10(7): 1122-34, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25704815

RESUMO

The global impact of DNA methylation on alternative splicing is largely unknown. Using a genome-wide approach in wild-type and methylation-deficient embryonic stem cells, we found that DNA methylation can either enhance or silence exon recognition and affects the splicing of more than 20% of alternative exons. These exons are characterized by distinct genetic and epigenetic signatures. Alternative splicing regulation of a subset of these exons can be explained by heterochromatin protein 1 (HP1), which silences or enhances exon recognition in a position-dependent manner. We constructed an experimental system using site-specific targeting of a methylated/unmethylated gene and demonstrate a direct causal relationship between DNA methylation and alternative splicing. HP1 regulates this gene's alternative splicing in a methylation-dependent manner by recruiting splicing factors to its methylated form. Our results demonstrate DNA methylation's significant global influence on mRNA splicing and identify a specific mechanism of splicing regulation mediated by HP1.


Assuntos
Processamento Alternativo , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Animais , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Éxons , Genoma , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina
18.
Nucleic Acids Res ; 41(12): 6300-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23630323

RESUMO

The transcriptional landscape in embryonic stem cells (ESCs) and during ESC differentiation has received considerable attention, albeit mostly confined to the polyadenylated fraction of RNA, whereas the non-polyadenylated (NPA) fraction remained largely unexplored. Notwithstanding, the NPA RNA super-family has every potential to participate in the regulation of pluripotency and stem cell fate. We conducted a comprehensive analysis of NPA RNA in ESCs using a combination of whole-genome tiling arrays and deep sequencing technologies. In addition to identifying previously characterized and new non-coding RNA members, we describe a group of novel conserved RNAs (snacRNAs: small NPA conserved), some of which are differentially expressed between ESC and neuronal progenitor cells, providing the first evidence of a novel group of potentially functional NPA RNA involved in the regulation of pluripotency and stem cell fate. We further show that minor spliceosomal small nuclear RNAs, which are NPA, are almost completely absent in ESCs and are upregulated in differentiation. Finally, we show differential processing of the minor intron of the polycomb group gene Eed. Our data suggest that NPA RNA, both known and novel, play important roles in ESCs.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Pequeno RNA não Traduzido/metabolismo , Transcrição Gênica , Animais , Células Cultivadas , Epigênese Genética , Histonas/genética , Masculino , Camundongos , Proteínas/genética , RNA Polimerase II/metabolismo , Splicing de RNA , Pequeno RNA não Traduzido/biossíntese , Pequeno RNA não Traduzido/fisiologia , Spliceossomos/metabolismo
19.
Nat Commun ; 3: 910, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22713752

RESUMO

Embryonic stem cells are characterized by unique epigenetic features including decondensed chromatin and hyperdynamic association of chromatin proteins with chromatin. Here we investigate the potential mechanisms that regulate chromatin plasticity in embryonic stem cells. Using epigenetic drugs and mutant embryonic stem cells lacking various chromatin proteins, we find that histone acetylation, G9a-mediated histone H3 lysine 9 (H3K9) methylation and lamin A expression, all affect chromatin protein dynamics. Histone acetylation controls, almost exclusively, euchromatin protein dynamics; lamin A expression regulates heterochromatin protein dynamics, and G9a regulates both euchromatin and heterochromatin protein dynamics. In contrast, we find that DNA methylation and nucleosome repeat length have little or no effect on chromatin-binding protein dynamics in embryonic stem cells. Altered chromatin dynamics associates with perturbed embryonic stem cell differentiation. Together, these data provide mechanistic insights into the epigenetic pathways that are responsible for chromatin plasticity in embryonic stem cells, and indicate that the genome's epigenetic state modulates chromatin plasticity and differentiation potential of embryonic stem cells.


Assuntos
Diferenciação Celular/fisiologia , Cromatina/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Lamina Tipo A/metabolismo , Acetilação , Animais , Diferenciação Celular/genética , Imunofluorescência , Metilação , Camundongos
20.
Nucleus ; 2(4): 300-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21941115

RESUMO

The pluripotent genome is characterized by unique epigenetic features and a decondensed chromatin conformation. However, the relationship between epigenetic regulation and pluripotency is not altogether clear. Here, using an enhanced MEF/ESC fusion protocol, we compared the reprogramming potency and histone modifications of different embryonic stem cell (ESC) lines (R1, J1, E14, C57BL/6) and found that E14 ESCs are significantly less potent, with significantly reduced H3K9ac levels. Treatment of E14 ESCs with histone deacetylase (HDAC) inhibitors (HDACi) increased H3K9ac levels and restored their reprogramming capacity. Microarray and H3K9ac ChIP-seq analyses, suggested increased extracellular matrix (ECM) activity following HDACi treatment in E14 ESCs. These data suggest that H3K9ac may predict pluripotency and that increasing pluripotency by HDAC inhibition acts through H3K9ac to enhance the activity of target genes involved in ECM production to support pluripotency.


Assuntos
Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Acetilação , Animais , Baculoviridae/genética , Linhagem Celular , Reprogramação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...